

Mechanics and Handicraft REG. U.S. PAT. OFF.

America's Leading New-Idea Magazine for 83 Years

AUGUST, 1955

| Will Detroit Build V-6 Cars?                                                                                           | •••••••                                           |                |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|
| Atomic Milestones Since Hiroshima                                                                                      | Will Detroit Build V-6 Cars?                      | 65<br>70<br>74 |
| Atomic Milestones Since Hiroshima                                                                                      | 10 Years of Atomic Progress                       |                |
| Tomorrow: Atomic Travel                                                                                                |                                                   | 78             |
| Atomic Power Plant to Serve New York                                                                                   |                                                   |                |
| What's Coming in 1956 Cars                                                                                             |                                                   | 82             |
| What's Coming in 1956 Cars                                                                                             |                                                   | 86             |
| Detroit Prepares to Stress Safety                                                                                      |                                                   |                |
| Detroit Prepares to Stress Safety                                                                                      | What's Coming in 1956 Cars                        | ΩΩ             |
| Now You Can Drive Better at Night                                                                                      | Detroit Prepares to Stress Safety                 | 20             |
| Flying Firemen Save Forests                                                                                            | Now You Can Drive Better at Night                 | 93             |
| Teaching Power Tools to Run Themselves. 106 Gas-Engine Wizard Turns to Steam Power. 114 Super Suburb Is a Country City | Flying Firemen Save Forests                       | 00             |
| Gas-Engine Wizard Turns to Steam Power. 114 Super Suburb Is a Country City                                             |                                                   |                |
| How Strong Are Our Missiles?                                                                                           |                                                   |                |
| New Truck Shapes Tested in Wind Tunnel. 130 He Built a Play Town                                                       | Super Suburb Is a Country City12                  | 20             |
| He Built a Play Town                                                                                                   |                                                   |                |
| For the Home Mechanic  What You Can Do with Flex Wheels                                                                |                                                   |                |
| For the Home Mechanic  What You Can Do with Flex Wheels                                                                | He Built a Play Town                              | 32             |
| For the Home Mechanic  What You Can Do with Flex Wheels                                                                | Gus Slices Out of the Rough13                     | 38             |
| What You Can Do with Flex Wheels                                                                                       |                                                   | • •            |
| How to Service Your Oil Burner                                                                                         |                                                   |                |
| The Case of the TV Rasters                                                                                             |                                                   |                |
| Six Uses for a Compass                                                                                                 |                                                   |                |
| Six Uses for a Compass                                                                                                 |                                                   |                |
| His Shop Was for the Birds                                                                                             |                                                   |                |
| Home-Built Wheelbarrow Likes Tough Jobs 166 How to Apply a Rubber Roof                                                 |                                                   |                |
| How to Apply a Rubber Roof                                                                                             | His Shop Was for the Birds                        | 57             |
| Vacuum-Cleaner Motor Opens Fan Window 182 Pull-Out Bed Converts Car to Camp                                            |                                                   |                |
| Pull-Out Bed Converts Car to Camp                                                                                      |                                                   |                |
| Building for the Big Blows                                                                                             |                                                   |                |
| I Fly a Control-Line Trainer                                                                                           |                                                   |                |
| Outriggers-Steady My Outboard Canoe194 How a Metal Detector Works198                                                   |                                                   |                |
| How a Metal Detector Works198                                                                                          |                                                   |                |
|                                                                                                                        |                                                   |                |
|                                                                                                                        | (More features and departments are listed on page |                |

Editor VOLTA TORREY

Managing Editor
HOWARD ALLAWAY

Art Editor HOWARD C. JENSEN

Associate Editors
Alden P. Armagnac, Stanley
Beitler, Henry B. Comstock,
Devon Francis, Sheldon M.
Gallager, Herbert O. Johansen,
Martin Mann, Everett H. Ortner,
Ruth Westphal.

Harry Samuels (Director), Herbert Anthony, Gene Butera, Eric A. Karminski Jr., Henry W. Kazmirowski, Dana B. Rasmussen, Laylen H. Sweet.

Kendall W. Goodwyn (Director), Frank Dorr, Georgette Sparks, Harriet Trowbridge.

Photography
W. W. Morris (Director), Hubert
Luckett, Orlando Guerra.

Assistant Managing Editors
Frank Rowsome Jr.
Robert P. Stevenson

Mechanics and Handicrafs
Harry Walton

Midwestern Editor Kenneth Wylie (Chicago)

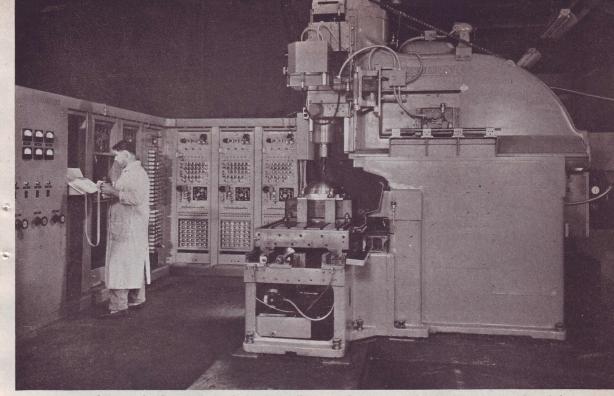
Pacific Coast Editor
Wesley S. Griswold (Los Angeles)

Editorial Assistants
Rosa Lee Beeland (Chief),
Louise Levis, Roberta Marks,
Helen Stratton, Joan Wolf.

Publisher
GODFREY HAMMOND

President
RALPH H. FLYNN

Advertising Manager LEE P. ADAMS


Circulation Director
EUGENE WATSON

ADVERTISING OFFICES: NEW YORK-353 Fourth Ave. CHICAGO-360 North Michigan Ave. DETROIT-820 Book Bidg. SAN FRANCISCO-114 Sansome St. CLEVELAND-328 Citizens Bidg. LOS ANGELES-1127 Wilshire Bivd. PORTLAND, ORE.-520 S.W. Sixth Ave.

EDITORIAL OFFICES: 353 Fourth Avenue, New York 10, N. Y.

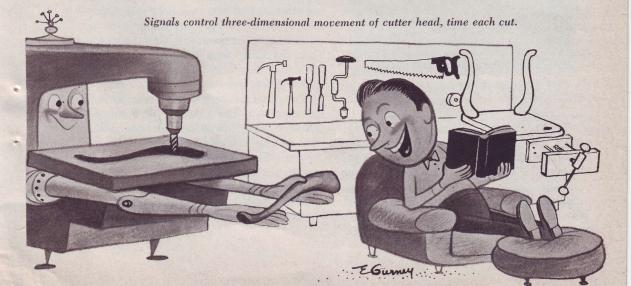
Published monthly at 353 Fourth Avenue, New York 10, N. Y., by Popular Science Publishing Co., Inc., Godfrey Hammond, Chairman of the Board; Ralph H. Flynn, President and Treasurer; Franklin E. Parker Jr., Secretary; Eugene Watson, Vice-President. Second-class mail privileges authorized at New York, N. Y. and Dayton, Ohio. Entered as second-class matter at the Post Office Department, Canada. Printed in U.S.A. Copyright, 1955, by Popular Science Publishing Co., Inc. All rights reserved in the United States, Great Britain, and in all the countries participating in the International Copyright Convention and Pan-American Copyright Convention Avearly subscriptions to United States, its possessions and Canada, \$3 40 (2) years, \$6.00; 3 years, \$8.00); foreign countries \$1 per year extra. Four weeks' notice is needed to change a subscriber's address. Please give both old and new addresses, including postal zone numbers.





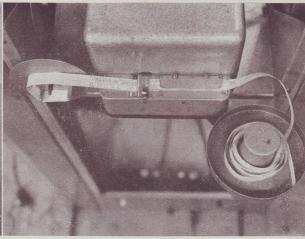
Too big yet for home shop, this MIT milling machine is run by computer-control at left.

of tapes—one each for legs, arms, back and seat.


That night, he clamps a nice piece of birch into his Tapemaster, slips the tape into the control box, flips the switch, and sits back with his pipe and the new issue of *Outdoor Life*.

Forty minutes later, the rumble of the Tapemaster stops and Joe takes a look. One leg is finished. So he clamps on another piece of birch . . .

Sure it's a dream-in 1955. But the


engineering basis for Joe's Tapemaster exists right now. Sitting up in the Servomechanisms Laboratory of the Massachusetts Institute of Technology in Cambridge, Mass., is a milling machine that will turn out any metal part at the command of a little roll of tape. Originally a standard, vertical 28" Cincinnati Hydro-Tel, it now has hitched to it \$50,000 worth of electronics.

To conceive, design and build the MIT machine took some quarter-million





PAPER TAPE is punched on standard equipment used in teletypewriters. Operator follows code directions, in which blueprint lines have been changed to column of figures.



**TAPE READER** pushes needlelike fingers against paper strip. Wherever there is a hole, steel finger goes through and completes an electrical circuit, sending a code signal.

dollars, 250 electron tubes, 280 pilot lights, 175 relays—and brilliant engineering on the part of Tech's Department of Electrical Engineering. As father of a whole new family of machine tools, it will earn its keep many times over.

What we can expect. Whether such industrial giants can be scaled down to home-shop size and price is anybody's guess. But it is no guess that these tape-eaters are going to bring a lot of eye-opening changes to industry. Someday, perhaps . . .

• A remote overseas base will be able to make a desperately needed part in a few hours by plugging a machine tool into a radio receiver.

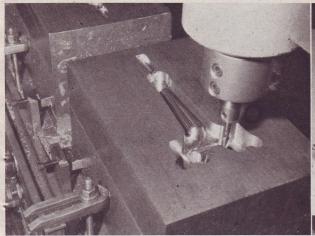
• Machines in factories spotted across the country will all be controlled from one central headquarters.

• Little machine shops will be able to do big jobs by buying or renting control tapes.

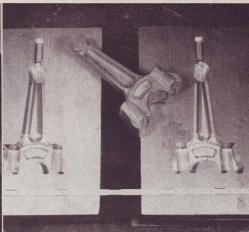
• Automobiles may change design more often—perhaps even seasonally—thanks to tapes that cut tooling-up costs.

Three things make all this possible: First, blueprints can be converted into numbers (hence the name "Numerical Control"). Second, the numbers can be converted into a perforated paper tape which generates electric signals. Third, the signals can operate controls of a

machine tool—to make the part on the blueprint.


Turning a blueprint into holes in a tape—"programming," they call it—requires a man who knows machining, tools and metals. He has to break up every curve in the design into straight lines. The automatic machine cuts straight lines only—but they can be as short as .0005 inch. A series of such lines is a curve for all practical purposes.

The programmer next translates each straight line into numbers. Three numbers represent distance of cut in each direction: up or down, back or forth, sideways. A fourth number tells the time the cut will take.


Typing out a pattern. The programmer then codes the numbers into a pattern of holes in the slim paper tape by operating a typewriter-like machine. This machine, and the tape it makes, are much like the ones used for high-speed Teletypes.

The programmer's final job is to feed the tape into the machine director, essentially an electronic computer. From now on the machine is on its own.

When the tape is run through the director, tiny steel needles finger the holes and read the numbers, changing them into electrical signals. These signals can be recorded, transmitted by radio or wire,



**DIE BLOCK** for master piston rod of a radial aircraft engine was cut automatically in solid steel, using tape controls. Run was continuous except for halt to change cutter.



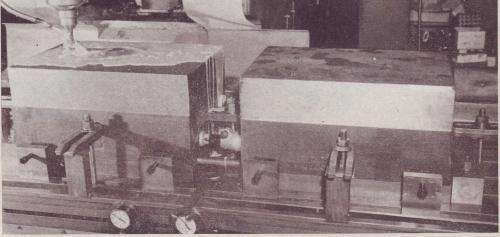
**PAIR OF DIES** is checked against a dummy piston rod molded in dies made in earlier run. Exact fit showed complete duplication resulting from re-use of the same control tape.

and reproduced anywhere in the world.

From these signals, the computer figures the rate of feed and orders servomechanisms to adjust the speed controls of the machine's three hydraulic feeds.

The actual movement of the cutter through the metal may be momentarily slower or faster than expected because of variations in metal hardness and dulling of the cutting edge.

To catch such errors, the computer constantly inspects both the orders received by the servos and the actual movement of the cutting tool. If either differs from that on the tape, the computer automatically sends corrections.


These "feedback" inspections do a good job. The control system is accurate to .0005 inch, much more precise than the .002-to-.004-inch tolerance of the machine itself.

Despite its complexity, the numerically controlled machine is dependable. If anything goes wrong in the controls or machine, alarm circuits stop everything before the work can be damaged. In thousands of hours of operation, the elec-

[Continued on page 222]

NO HUMAN OPERATOR had to watch work, so blocks were covered with wetting agent during

die cutting. This speeded work, reduced cutter wear. Note next block ready on table.





# Get Good Performance the Way Big Fleets Do..

East Texas Motor Freight, Dallas, Uses Federal-Mogul Engine Bearings

Some 500 communities between the Gulf of Mexico and the Great Lakes know East Texas Motor Freight's direct daily service.

ETMF keeps its modern equipment in top shape by careful maintenance work. For many years, ETMF has been a good user of Federal-Mogul engine bearings.

Federal-Mogul oil-control bearings have led in the replacement field for 30 years—because of quality! Get this quality, next time your car engine is overhauled. It costs no more to get the best—ask your mechanic!

for New Power... FEDERAL-MOGUL





RESEARCH . DESIGN . METALLURGY PRECISION MANUFACTURING . SERVICE

#### Teaching Tools to Run Themselves [Continued from page 109]

tronic director has been down only three percent of the time. Much of this was due to a design defect now corrected.

Remote control, repetition of operations, saving in skilled manpower—these advantages of the MIT control system are important. But what makes the industry really happy is that it can do a run-of-the-shop job faster and better.

Up to now, automatic machine tools have been either very expensive special machines that make one part and no other or general-purpose machines that must follow a costly model or template. A skilled operator must still handle some controls and determine running speed.

Makes any part. The tape-controlled machine can be used for any part, not just one. There is no expensive process of modelmaking. And the final run is at high speed, completely automatic and completely accurate.

Making a particular airplane part by conventional methods requires 27 hours for set-up and a 169-minute milling operation. Making the same part with tape controls requires 16 hours for tape preparation, two hours for set-up, and a 39-minute run. For any re-run the tape preparation would be eliminated, and the saving would be 27 hours and 10 minutes!

Standardized components and circuits can be expected to trim the cost of the MIT system sharply on production models. Even so, the computer for the director is unlikely ever to become exactly cheap. Fortunately, however, one director can control as many machines as desired—and at any distance. Thus a director is not needed for each tool.

But what really takes Numerical Control out of the millionaire brackets is the fact that the electronic signals produced by the director can be recorded magnetically. Any machine fitted with the necessary servocontrols—far less costly than a director—can use this magnetic recording to direct its movements. Thus a machine owner who can obtain record-

[Continued on page 224]

## STOP SAGGING REARS!



### AIR LIFT PNEUMATIC SPRING

Car got that "middle age spread" look? Even new cars need help for overloads of luggage, equipment or extra passengers. AIR LIFTS fit between leaf springs and frame—inflate with air to support overloads up to 1000 lbs! Perfect for vacation trips, and so easy to install. See your dealer or write for his name.





on Air Lift remedies for sagging rears. Write Dept. 138.

#### AIR LIFT COMPANY, LANSING, MICHIGAN



FURNACE FACTS!

DEPT. P-8

How You Can Measure Heating Quality
Takes the mystery out of heating . . .
dramatic full-color pictures . . easy to
read. Helps you judge what's inside the
furnace . . . what to expect in modern, automatic comfort. Tells about the new Duratube model that's practically indestructible!

Janitrol

COLUMBUS 16, OHIO



#### Teaching Tools to Run Themselves [Continued from page 222]

ings doesn't even have to own a director.

And soon it will be possible to convert ordinary non-automatic machines to tape controls at minimum cost. Work tables will be made with all three feed mechanisms, and all servocontrolled. The cutting head itself can be fixed in place.

Thus the uses of automatic controls are not likely to be limited to the big boys of industry. Medium-sized concerns that don't want to make a big investment in a director-computer will be able to send a blueprint to a computer service center. Back will come a custom-made recording of the product that can be plugged right into a machine. Such computer service centers already exist.

Big mass-production industries like auto making will find plenty of uses for Numerical Control. It can mean more frequent changes in models—and more specialized types such as sports cars and sportsman's wagons. Today the body dies for each model require an expensive process that starts with elay models, proceeds through a series of carved wooden replicas, and is climaxed by a steel die practically worth its weight in gold. With Numerical Control, there will be a far smaller investment to be paid off.

Plane makers have long been eager to utilize automatic machines, but the production run of a typical aircraft part is too short to pay off the big cash investment needed for the specially built, one-purpose type. Tape controls provide automatic machines that can do many different jobs. A whole family of such machines is being developed by aircraft builders and machine-tool companies.

Some experts predict that rocket-plane parts of the near future will be beyond the ability of human machine operators to turn out. It will be automatic tools or nothing.

#### **Auto-Suggestion**

The sign which contributes most to safe driving is the one on the side of the car that reads "Police."—Hudson Newsletter.

224 POPULAR SCIENCE